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Abstract—Deep neural network-based image classifiers signif-
icantly impact various sectors of society, with applications such
as automatic driving and tumor detection. However, researchers
have found that these models are vulnerable to carefully selected
perturbations that can cause misclassification. These adversarial
examples allow attackers to infiltrate real-world neural network
image classifiers and pose a security risk. This paper examines
four adversarial attacks (Fast Gradient Sign Method, Projected
Gradient Descent, LocSearchAdv, and Surrogate Attack) based
on the attacker’s knowledge level of the target model and
compares their effectiveness on the same testing dataset by
running experiments on ImageNet data using MobileViT as the
target model. No attack was found to outperform the others in all
respects; however, certain algorithms perform better depending
on the situation. The paper also discusses possible defense
strategies and ethical concerns related to adversarial attacks.

I. INTRODUCTION

As AI becomes more prominent, it is important to ac-
knowledge that the inputs given to machine learning (ML)
systems may cause harm, whether that may be inputs given
by a human or taken by the ML system itself. This led to the
development of the field of Adversarial Machine Learning,
which manipulates input to reach a desired outcome by taking
into account the characteristics of an ML system [1]. These
inputs are known as adversarial examples, which aim to have
the target model purposefully return a wrong output [2].
A target model is the classifier for which the attacks are
generated. It is the model whose weakness attackers are trying
to exploit. The manipulations made on the input are known
as adversarial perturbations. The algorithms that create that
adversarial perturbation are known as attacks [3]. Defenses can
then be implemented so ML systems would not fall vulnerable
to adversarial cases and attacks. These attacks and defenses are
done by “attackers” and “defenders”, respectfully.

Though the risk of these adversarial cases has yet to be
quantified, it is important to lower the risk before they enter the
real world [3]. Suppose an attacker is successful in attacking
one ML system. That attacker might then be able to transfer
the same knowledge to attack more ML systems without much
knowledge of the system or the data, also known as a black-
box attack [4].

In particular, our paper focused on comparing adversarial
attacks on image classification models. An image classification
model is an ML model where an image is inputted and a
label is returned for the contents of the image. Our main
motivation to use an image classifier is due to vast applications.
For instance, image classification software is used in medical

imaging for tumor detection [5] or in the LiDAR system in
self-driving cars [6].

Consider in Fig. 1, which our target model classifies as an
image of a panda correctly. Once an adversarial attack is run
on the image classification model, the input image becomes
perturbed. An instance of this is seen in Fig. 2 and Fig. 3,
where an attack is run in Figure 1. This results in the model
having a harder time identifying the object in the image, where
the model may classify the image incorrectly (as seen in Fig. 3)
or if it classifies the image correctly, the classification will have
a lower confidence (as seen in Fig. 2). However, the effect that
the perturbations have on an image classifier is not equivalent
to its effect on a person. Even though the perturbations in
Figures 2 and 3 change the output resulting from the image
classifier, a human may still be able to accurately classify these
two images as pandas. Yet, some attacks have greater visible
perturbations than others, as seen in Fig. 3.

Fig. 1: Original Panda Image
Label given by Image

Classifier: Panda

Fig. 2: Perturbed Panda Image
Label given by Image

Classifier: Panda

Fig. 3: Perturbed Panda Image
Label given by Image Classifier: Gibbon

A. Attack Types

Adversarial attacks can be classified in many ways. They
can be grouped based on how they interact with the model they
are attacking, and what part of the model they are attacking, for
example, poisoning training data versus attacking the model
itself. Within the scope of this paper, we will break down
adversarial attacks based on the attacker’s knowledge.
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The first type of attack is Perfect-Knowledge (PK), or white
box attacks. In this scenario, it is assumed attackers know
everything about a system. These types of attacks are useful
so one can prepare for worst-case scenarios. An example might
be attacking one’s own system to see where there are weak
points [7].

The next type of attack is Limited Knowledge (LK) or gray-
box attacks. These attacks are one where the attacker has some
understanding of the model but only some of the information.
With gray box attacks, attackers generally know the kind of
learning algorithm or the architecture for a model, but not the
training data or the trained parameters [7]. It is assumed that
the attacker would have a surrogate dataset from a similar
source. Grey box attacks can be used to test how well attacks
can transfer across different models [7].

The final type of attack is a Zero-Knowledge (ZK) or black
box attack. A black box is a situation in which the attackers
do not know the target model’s architecture or weights, and
have no access to its exact training data. In this case, the only
access they have to the model is interacting with it: getting
its predicted class label, and possibly a confidence value, after
giving it an image. The attacker will likely also make some
basic assumptions about the model. For example, if the model
discerns pictures of animals, they know that it was probably
trained on images of animals [7].

Attacks can also be classified as either targeted or indis-
criminate. A targeted attack is when the adversarial examples
aim to get a specific output for a specific classification. A
non-targeted attack is when the goal is to get an incorrect
classification irrespective of class [8].

II. IMPLEMENTATION

We split the attacks we wanted to focus on into white-box
and black-box conditions. Given the ambiguity of gray box
attacks, we have chosen to not include them in our study.
Our white-box attacks include the Fast Sign Gradient Method
(FGSM) and Projected Gradient Descent (PGD). Our black-
box attacks are LocSearchAdv and the Surrogate Attack.

We aim to compare how effective the attacks are at ma-
nipulating the model. We consider an instance of the attack
correctly fooling the model to provide the wrong input as
a success. We assume that the white-box attacks are more
effective in attacking the model compared to the black box due
to having more accessible knowledge of the targeted model.

A. FGSM

The Fast Gradient Sign Method (FGSM) is one of the
most well-known pioneering approaches in the domain of
adversarial machine learning, introduced by Ian J. Goodfellow,
Jonathon Shlens, and Christian Szegedy in their seminal work
[9]. The underlying assumption of the FGSM is that despite
the high-dimensional and non-linear nature of deep learning
models, the decision boundaries can be linearly approximated
in the vicinity of the data points, making it possible to generate
effective adversarial examples with a single step of gradient
ascent. The essence of FGSM lies in its use of the gradient

of the loss function with respect to the input image to create
perturbations that maximize the loss. By taking the sign of the
gradient w.r.t the input image, it ensures that the adversarial
noise is directed towards increasing the model’s prediction
error, thereby effectively and efficiently misleading the net-
work. Despite being developed eight years ago, it still shines
light on the vulnerability of contemporary neural networks to
adversarial attacks given its simplicity and efficiency.

For a color image, FGSM first calculates the gradient of
the model’s loss function, regarding the correct label w.r.t. this
input image. This gradient essentially indicates the direction in
which each pixel’s RGB channel’s intensity should be adjusted
to maximize the model’s error. As depicted in Figure 4, The
vertical axis, l represents the loss function of the classifier
regarding the true label, which measures the error between
the classifier’s prediction and the true label. The curve shows
how the loss changes as we move away from the original
image x (one of the RGB channel values for a specific
pixel) in the input space. FGSM works by taking the gradient
(the derivative) of the loss function w.r.t. the input image x.
This gradient points in the direction where the loss function
increases, indicating how the pixels in the image should be
changed to increase the classifier’s error. FGSM then adjusts
the original image x by a small amount ϵ in the direction of
this gradient (indicated by the dotted line). The size of ϵ is
chosen to be small enough that the change is imperceptible
to the human eye but large enough to fool the classifier. The
new image x′ is the adversarial example, which is very close
to x in the input space (the distance is ϵ), but far enough along
the gradient of the loss function when adding across all the
dimensions (all pixels RGB channel values) to significantly
increase the loss, leading the classifier to likely misclassify
x′.

Fig. 4: Example of taking a fixed step of ϵ in the direction of
the gradient (negative) to increase the loss regarding the

correct label.

B. PGD

Projected Gradient Descent (PGD) is another gradient-based
attack method that focuses on the inner optimization problem
of maximizing the loss regarding the true label of a given
input. PGD is one of the first and most basic attack methods
in the literature, but we can perceive it as an iterative version of
FGSM with a more carefully chosen and dynamic step size.
Unlike FGSM, which takes a single large step to create an
adversarial example, PGD takes multiple small steps, allowing
for a more refined search within the adversarial space. At
each step, PGD calculates the gradient of the loss function

2



l w.r.t. the adversarial example x′ generated in the previous
iteration and then moves x′ in the direction of this gradient by
a small amount. This process is repeated for a fixed number
of iterations or until convergence.

For a color image, similar to FGSM, PGD first calculates
the gradient of the model’s loss function at each iteration,
regarding the correct label of the input images. Equally, this
gradient indicates the direction of how to adjust the input
to increase the loss w.r.t. one of this pixel’s RGB channel
values. Unlike FGSM which takes a fixed-size step toward the
direction of the gradient, PGD takes a much smaller step for
all pixels determined by the optimizer at each iteration and
calculates the gradient in the resulting position again in the
next iteration to make sure the loss is always increasing as the
number of iterations grows. Take the example from Figure 5, to
ensure the perturbations remain imperceptible, PGD employs
a projection operation after each gradient step to clamp the
perturbed example x′ back onto the ϵ-ball around the original
image x. This ϵ-ball defines the space of allowable pertur-
bations that do not exceed the predefined perturbation limit
ϵ. This projection effectively makes sure that the adversarial
example does not stray too far from the original image in
terms of pixel values, maintaining the visual similarity that
is critical for the adversarial example to remain undetected by
human observers. The resulting adversarial example from PGD
is thus a product of a careful balance between maximizing
the classifier’s loss and staying within the imperceptibility
constraints imposed by ϵ. Through this iterative and refined
approach, PGD can discover more potent adversarial examples
compared to FGSM, often resulting in a higher success rate
of misclassification in white box situations.

Fig. 5: Left: Example of perturbation using FGSM; Right:
Example of perturbation using PGD that results in finding a
local maximum within the ϵ-ball for the loss regarding the

correct label.

C. LocSearchAdv

While FGSM and PGD use gradient information to generate
perturbation, one black box attack that tries to infer informa-
tion from the model based on input images is LocSearchAdv
Nina Narodytska and Shiva Prasad Kasiviswanathan propose
a method for generating adversarial examples in a black
box setting by adding perturbations to a set of randomly
selected pixels in the input image [10]. This algorithm, called
LocSearchAdv, works under the assumption that there exists a
subset of pixels in the input images such that perturbing their
values will lead to a failure for a neural network to classify that
image correctly. To ensure the efficiency of the algorithm, the

authors utilize a greedy local search to carefully select a small
set of pixels to perturb in each round. The main motivation
behind this algorithm is to iteratively locate a small set of
pixels that leads to misclassification by a deep neural network
without using any gradient information [10]. Therefore, for
each iteration, the algorithm will find a set of potential pixels,
denoted by Pi, to perturb and obtain a subset of these pixels
Î) that are most likely to cause failure in prediction as the
actual pixels perturbed at that iteration.

Table 1 LocSearchAdv Parameters
I: input image
p: init perturbation coefficient to determine the set of most

sensitive pixels
r: perturbation param for actual perturbation for the pixels
t: number of pixels perturbed per iteration
n: neighborhood size
Iter: max number of iterations
LB: lower bound of the pixel value, LB < 0 < UB
UB: upper bound of the pixel value, LB < 0 < UB

Pseudocode for LocSearchAdv:
1) Resizes all pixel values in the I within [LB,UB]
2) For each iteration i such that i <= Iter

• Select a pool of potential pixels (Pi) to perturb
for this iteration
– If i = 1, Pi is randomly sampled from the

input images
– If i ̸= 1, Pi is the neighborhood of the pixels

perturbed at the previous iteration (i− 1)

• Perturb each pixel in Pi individually and get the
confidence interval for the true class prediction
of that perturbed image to obtains a set of
confidence intervals (I) of the true class with
each value representing a pixel in Pi.
– This perturbation is performed by taking the

sign of that pixel value and times a coefficient,
denoted by p.

• Select a subset of the pixels (Î) in I that have
the lowest confidence interval of the true class
label as the pixels to perturb for this iteration i,
denoting the set of most sensitive pixels to cause
a misclassification in this round.
– This perturbation is performed by applying a

coefficient (r) to the pixel value in a cyclic
manner to ensure that the perturbed pixel
value is still in the [LB,UB] range.

Two types of perturbations happen in each iteration of the
algorithm. The first occurs when the algorithm finds the set of
pixels in Pi that are most sensitive to causing a misclassifi-
cation. Therefore, the algorithm doesn’t need to constrain the
perturbation so that all pixel values are in [LB,UB]. However,
for the second perturbation, which occurs when the algorithm
perturbs the pixel selected for this iteration, the algorithm must
ensure that the image is still valid after the perturbation and
that all pixel values are in [LB,UB]. Therefore, the algorithm
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uses the cyclic methods shown below to perturb each selected
pixel.

Algorithm 1 Cyclic (LB, UB, r, pixelval)

if r · pixelval < LB then
return r · pixelval + (UB − LB)

else if r · pixelval > LB then
return r · pixelval − (UB − LB)

else
return r · pixelval

end if

Based on the construction of cyclic methods illustrated
above, we need to make sure that the pixel value returned
is strictly in the range of [LB,UB]. Hence, some restriction
on r is necessary. Considering the two edge cases where the
pixelval is LB or UB, we need to make sure that:

r · UB − (UB − LB) ≤ UB

r · UB ≤ UB + UB − LB

r · UB ≤ 2UB − LB

r ≤ 2− LB

UB

r · LB ≤ r · LB + (UB − LB)

r · LB ≤ LB + LB − UB

r · LB ≤ 2LB − UB

r ≤ 2− UB

LB

Therefore,

r ≤ min(2− UB

LB
, 2− UB

LB
)

However, our original implementation of LocSearchAdv
doesn’t perform well on large images. We based our imple-
mentation on the algorithm described in Narodytska and Ka-
siviswanathan’s paper Simple Black Box Adversarial Perturba-
tions for Deep Networks [10]. Their algorithm was designed to
run on images from the CIFAR-10 dataset which has colored
images of size 64 × 64 pixels. The images our experiments
ran off of were of size 256 × 256 pixels. This difference in
image size is significant because it means that one perturbed
pixel in a 64× 64 image has much more weight than a single
pixel in a 256× 256 image. This difference led us to modify
LocSearchAdv and develop the Grid Method to improve the
algorithm’s performance.

The Grid Method builds off of the idea that the images
we are running off of are higher resolution than images that
LocSearchAdv was originally designed to run on (CIFAR-10).
The Grid Method works by dividing the larger image M into
a grid and treating each cell in the grid as a single pixel.
For each iteration, the algorithm picks a set of pixels in the
grid to perturb and we map these pixels in the grid to the
corresponding sections of pixels in the input image to perform
the actual perturbation. We define our smaller image size as

n x n for image N and our real image size as m x m for
image M where n < m. The goal is to scale image M down
to the size of N, which perturbs more pixels at each round and
can cover more regions in the original image. In addition to
segmenting the image into a grid, for each pixel, we perturb at
each iteration, we ignore that pixel for the next 30 iterations. In
this way we don’t perturb the most sensitive pixels frequently
and, the algorithm will be able to traverse all sections of the
input image without focusing on one specific region of the
image.

Moreover, to better find the most sensitive pixels in each
round, we adeptly update the value of p such that the set of I
is in a reasonable range. More specifically, after we obtain the
set of confidence intervals for the pool of pixels, we calculate
its average value (notation). If the average value is smaller
than 0.1, this indicates p is too big such that we lose any
distinction between each pixel and we decrease p for the next
round. If the average value is too big, this indicates p is too
small such that we didn’t perturb the pixel enough to showcase
how one pixel would contribute to the misclassification of the
input image and we increase p for the next round.

It is worth noting that the amount of perturbations visible
to the human eye in Grid Method, Fig. 7, is more than in the
original LocSearchAdv, Fig. 6. This suggests the question of
whether it is better to have an algorithm that can perturb more
reliably but is more noticeable to the human eye or to have a
less successful algorithm where the perturbed images are less
noticeable, which we dive deeper into the discussion section.

Fig. 6: LocSearchAdv
perturbation

Fig. 7: LocSearchAdv with
grid method perturbation

D. Surrogate Attack
Another form of black box attack is the Surrogate attack.

Like all our adversarial attacks, the surrogate attack is a means
of generating adversarial example images for the target model
by perturbing pixels of real images. What sets this attack apart
is that it strives to make a white box out of the black box
situation so that white box attacks, such as PGD or FGSM,
can still be used. Since these white box attacks work by taking
feedback from a white box model, a so-called surrogate model
is made and trained by the attackers and used as a proxy for
the target model when using FGSM or PGD to generate an
adversarial example. An adversarial example generated in this
way will only be effective if the surrogate model is a good
proxy for the target model meaning that its decision boundary
is very close to that of the target model. If they are close, we
assume it will display the same vulnerabilities and trends as
the target model for the same input [11].

4



The Surrogate model is trained on images with image labels
that have been produced by the target model on those images.
This way, the surrogate model is trained to mimic the decision
boundary of the target model. The accuracy it achieves on this
dataset represents the degree to which the decision boundary
of the target model has been approximated. Hence, the per-
formance of the surrogate attack correlates directly with the
accuracy of the surrogate model on its training dataset.

III. EXPERIMENTATION

A. Dataset

For our dataset, we chose ImageNet1k ILSVRC 2012 due
to its reputation within the field of image classification [12].
ImageNet1k is a database used mainly for object recognition
software. Due to its popularity, this allows us to use the
dataset across a great variety of models, without many changes
being made to the dataset itself. ImageNet1k is divided into
three parts: a training set (1.2 million images with labels),
a validation set (50,000 images with labels), and a testing
set (100,000 images without labels). There are 1000 possible
labels.

To gauge the relative effectiveness of various adversarial
attacks, we designed a test by which we could benchmark
performance. Since the objective of an attack is to reduce the
accuracy of the target model, this test is designed to compare
the performance of the target model on images before and
after a certain attack has perturbed them. To standardize this
test, we had to create a dataset of images for the target model
to evaluate in unaltered and perturbed form, we’ve called this
dataset the benchmark dataset.

Images in our benchmarking dataset must fulfill two con-
ditions. First, they need labels with which we can evaluate
the accuracy of target model predictions. Second, they can
not be images that have been used in the training of the
target model since the target model accuracy on such images
would be disproportionately high. Only the images in the
ImageNet1k validation set fulfill these two criteria so we
source our benchmark images from there.

We removed monochromatic images as we constructed our
benchmark datasets in case of the model’s constraints that only
allow it to accept three color channels (RGB).

We ended up making two benchmark datasets. A larger
one, containing 10000 images, and a smaller one of 1000
images. These were sampled randomly from the 50000 images
in ImageNet1k’s validation set to conserve the distribution of
classes.

B. Target Model

To add another dimension to our experiments, we also want
to compare the performances of each adversarial attack across
different model structures. We selected our model based on
two criteria:

1) Its architecture is still in use for state-of-the-art image
classifiers.

2) We can run predictions on it efficiently using our two
A100 GPU-equipped lab machines.

Vision Transformer (ViT) is a new classifier architecture
that achieves state-of-the-art results [13]. ViT adopts the
transformer architecture, commonly used in NLP tasks, for
image classification. It treats image patches as tokens and has
shown competitive results compared to convolutional neural
networks (CNN). Because of its more recent occurrence, ViT
is under less adversarial attack research, making it the primary
target model of our paper. From many variants of ViT, we de-
cided to proceed using MobileViT-small [14], a comparatively
lightweight ViT and CNN hybrid model developed by Apple.
We sourced our Apple MobileViT-Small target model from
HuggingFace. MobileViT-small has 77.8% top-1 accuracy on
our 10k images benchmark.

We also want to compare different attack’s performances
across different models. So, we chose ResNet-50 with weights
pre-trained on ImageNet1k as our secondary model. A Resid-
ual Network (ResNet) is a variant of a convolutional neural
network (CNN) introduced by a Microsoft research team
led by Kaiming [15]. ResNets are known for their ”skip
connection” feature, allowing them to be considered deep with
hundreds or thousands of layers. They are a staple in image
classification and have various versions such as ResNet-50,
ResNet-101, and ResNet-152, where the number of suffixes
represents the depth of the network. Due to our computing
resource limitations, we chose the lightest ResNet-50 model
as one of our target models, and we only deployed FGSM
and PGD attacks on it. Without any perturbation, ResNet-50
achieves 75.2% top-1 accuracy on our 10k images benchmark
dataset.

C. FGSM & PGD Experiments and Results Evaluation

1) Random Noise Baseline: FGSM and PGD both take in a
hyperparameter epsilon epsilon, in which epsilon represents
the maximum amount of perturbations allowed on each RGB
channel of the original image. So, an epsilon value of 64
represents a maximum value shift of 64 in the range [0, 255]
in any single RGB channel. The result we are evaluating is
the top-1 attack success rate, calculated as the percentage of
images that were classified correctly before the attack but
misclassified after. Limited by the time and computational
resources, we choose to increment epsilon exponentially from
20 to 27 to examine a broader range of attack outcomes.

To establish a baseline for assessing the efficacy of FGSM
and PGD, we introduced a control experiment utilizing a ran-
dom noise attack. This approach involves randomly perturbing
each pixel of an image with a δ value, sampled from a uniform
distribution ranging between zero and the specified ϵ value.
Our findings, as shown in Fig. 8-15, indicate that when ϵ is
set to 32, the success rate of the attack exceeds 40%, and when
ϵ is increased to 64, the success rate surges beyond 85%. Given
the destructive impact of larger ϵ values on the success rates
of attacks, our analysis subsequently concentrates on smaller
ϵ values, particularly those less than 32. This focus allows us
to evaluate the relative effectiveness of FGSM and PGD under
more subtle adversarial conditions, where the perturbations are
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less pronounced and potentially more challenging for models
to detect.

Fig. 8: FGSM, ϵ = 1 Fig. 9: FGSM, ϵ = 4

Fig. 10: FGSM, ϵ = 16 Fig. 11: FGSM, ϵ = 64

Fig. 12: PGD, ϵ = 1 Fig. 13: PGD, ϵ = 4

Fig. 14: PGD, ϵ = 16 Fig. 15: PGD, ϵ = 64

2) Results & Evaluation: We see that PGD tends to out-
perform FGSM in scenarios where the model presents a
higher degree of non-linearity. This pattern is demonstrated
in our experiments with MobileViT, where PGD’s success
rate supersedes that of FGSM by an average of 30%when
ϵ in [1-16]. Several factors can contribute to the more non-
linear nature of MobileViT compared with ResNet50: the self-
attention mechanism in ViT models contains quadratic compo-
nents w.r.t. the input and the non-linear softmax function and

ViT’s use of the Gaussian Error Linear Unit (GeLU), which
is more non-linear than the Rectified Linear Unit (ReLU)
found in ResNet. Since FGSM guesses the position of the
local maximum within the ϵ-ball by taking one step along the
current sign direction of the gradient, the more non-linear the
loss function is w.r.t. the input image, the less accurate this
guess is. This can be seen in Fig. 17.

Fig. 16: Top-1 attack success rate for FGSM, PGS, and
random noise on ResNet50 and MobileViT w.r.t.

exponentially increasing epsilon values

Fig. 17: Left: Example of perturbation using FGSM in a
somewhat linear surface; Right: Example of perturbation

using FGSM in a more nonlinear surface within the ϵ-ball

On Resnet50, we observed that FGSM outshines PGD
within a specific ϵ band—specifically when ϵ lies between 2
and 8. This could be attributed to the existence of multiple
local maxima within the adversarial landscape, where the
most prominent maxima are situated closer to the epsilon-
ball boundary. FGSM is designed to exploit the maximum
allowed perturbation range, while PGD may be stuck at a local
maximum closer to the original input value. Although this
phenomenon applies to MobileViT as well, the overarching
effect of non-linearity in this architecture makes maximum
less likely to occur on the ϵ-ball boundary, resulting in FGSM’s
reduced success when compared to PGD.

The performance of FGSM degrades in situations where the
epsilon values are not small enough to preserve local linear-
ity, yet not large enough to drastically degrade the image’s
quality as random noise attack with ϵ >= 32 does. This
highlights a critical epsilon range where FGSM’s effectiveness
is compromised. Conversely, when perturbation magnitude
is of lesser concern, FGSM presents a substantial efficiency
advantage. Our experimental results indicate that FGSM, being
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non-iterative, requires approximately seven times less compu-
tational time for perturbing an individual image than PGD,
a significant consideration in real-world applications where
computational resources and time are constrained.

Focusing on the results for PGD, MobileViT with 5.58
Million parameters is less robust than ResNet50 with more
than 25.63 million parameters since more parameters create a
more complex landscape for PGD’s stochastic gradient descent
optimizer to navigate.

D. LocSearchAdv Experiments and Results Evaluation

1) LocSearchAdv Parameter Selection: To better under-
stand how LocSearchAdv works and can be improved, we
adjusted the following parameters: neighborhood size, number
of pixel attacks per round, and perturbation coefficient r. We
modified each of these parameters one at a time to see how
they would affect the success rate of our algorithm.

Fig. 18: Illustration of LocSearchAdv Success Rate w.r.t
Neighborhood size

Neighborhood size did not have a significant effect on
the success rate of image misclassification as evident in Fig.
18. We tried different image d values where d represents
the number of pixels deep surrounding the center pixel. We
experimented by increasing d in increments of 1 from 1 to
5. The highest success rate occurred when d was 4 with 0.36
and the lowest was when d was 1 and 3 with a success rate
of 0.22.

Similarly, changing our pixel perturbation coefficient r did
not have a significant impact on the success rate as evident in
Fig. 19. We tried running trials where the r value was 0.25,
1.5, 2, 2.5, and 3. The r value that yielded the highest success
rate was when r = 2 and its corresponding success rate was
0.38. The lowest value of success rate is when r is 0.25 which
had a success rate of 0.14 and 3 with a success rate of 0.28.
This suggests that the coefficient value does matter and that it
matters how much you perturb pixels although there is not a
strong relationship between how much you perturb and success
rate.

The number of pixel attacks per round refers to the number
of individual pixels that in each iteration are perturbed. We
ran trials for each of the following values: 1, 5, 10, 25, and
50. We see a positive linear relationship between the number

Fig. 19: Illustration of LocSearchAdv Success Rate w.r.t
perturbation parameter r

Fig. 20: Illustration of LocSearchAdv Success Rate w.r.t the
number of pixel attacks per round

of pixels perturbed per round and the success rate as evident
in fig. 20. The largest amount of perturbed pixels (50 pixels)
yielded a success rate of 0.72. This is similar to the results
of comparing LocSearchAdv grid to LocSearchAdv with no
grid, as you perturb a larger number of pixels the success rate
increases.

LocSearchAdv Grid LocSearchAdv Org
Success rate 0.797 0.28
Conf 0.30403 0.33
Average Number of
Pixel Perturbed 0.07795 0.00353

2) LocSearchAdv Grid Method vs Original: Running ex-
periments with the same set of the ImageNet dataset, Loc-
SearchAdv with a grid size of five displays clear distinctions
between the original LocSearchAdv without any grid imple-
mentation. The table above displays the different performances
of the two algorithms. The success rate represents the percent-
age of images that were successfully perturbed. The variable
conf in our table represents the average confidence interval
of the misclassified class for all the successfully perturbed
images. Average pixel perturbed is the average percentage of
pixels perturbed for all successfully perturbed images.

The use of the grid in LocSearchAdv perturbs more pixels
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at each iteration, resulting in a higher overall percentage of
perturbed pixels. Additionally, due to the 256 × x256 size
of the testing images, the algorithm may not be able to
traverse all sections of the images without the use of a grid.
This could result in the algorithm missing some of the most
sensitive pixels, leading to misclassification. When working
with relatively larger images, the original LocSearchAdv de-
pends on randomization’s effect at the first iteration. If the
randomly selected pixels in the first round contain sensitive
pixels that cause misclassification, the algorithm may easily
find a successful perturbation. Otherwise, the algorithm may
get stuck in a local region of the input image and fail to explore
all possible pixels; however, when using a grid, the algorithm
can search for a larger region during each iteration, making it
easier to identify the most sensitive pixels to perturb.

The original LocSearchAdv can also achieve a higher suc-
cess rate by perturbing more pixels in total, which can be
achieved by increasing the number of pixels perturbed per
round and the maximum number of iterations. Nevertheless,
LocSearchAdv with the Grid Method is more efficient because
it treats sections of pixels as a unit during perturbation. This
approach eliminates the need to query each pixel to determine
whether it is one of the most sensitive ones. The algorithm
identifies sensitive sections in the input images that may lead
to misclassification by querying sections of pixels in the grid.

E. Surrogate Attack Experiments and Results Evaluation

1) Implementation: In our implementation, we have as-
sumed the strictest definition of a black box, in which the
only access attackers have to the model is using it: getting
its predicted class label without confidence after giving it an
image.

The images used to train our surrogate model come from
ImageNet1k 2012’s Testing set. ImageNet1k’s Testing Set
originally had 100,000 images; however, 85,000 images were
left once black-and-white images were removed, all of which
were used in the training of our surrogate model. This data
fits our purposes well as we could not use the training data
of the target model (to maintain a true black box) and we are
already using the validation data for attack benchmarking. Fig
21 summarizes the training process.

In our research of high-accuracy image classifiers for Ima-
geNet, we decided upon the VGG16 architecture, which has
a 92.7% accuracy on ImageNet 2012’s Testing Set. Fig 22
displays the structure of the VGG16.

The VGG architecture is known for its 16 learnable parame-
ter layers. Its preprocessing procedure includes subtracting the
mean RGB of the training set from each pixel in the images.
The convolutional layers of the VGG16 model are unique in
the sense that they are 3× 3. Two 3× 3 layers with no spatial
pooling in between are considered to be equivalent to one 5x5
layer. The advantage of having multiple smaller layers is that
there is less number of parameters being considered at each
layer, creating a higher level of distinction. The occasional 1x1
convolutional filters add linear transformations to the input.
This counteracts any effect of non-linearity from the input

Fig. 21: Illustration of the processes of training the surrogate
model

Fig. 22: VGG16 Architecture of its 21 Layers, 16 of which
are learnable parameter layers

which is debated to be one of the original causes of adversarial
examples. is useful in increasing non-linearity [9]. All the
hidden layers have ReLU and there is no local normalization
done throughout [16].

We started to implement the exact architecture in the paper
“Very Deep Convolutional Networks for Large-Scale Image
Recognition” by using the VGG16 function in Kersas [16].
However, we did not see much success in this process. We
shifted our focus to implementing the VGG16 structure from
scratch and the specific tutorial that our final code has comes
from “Writing VGG from Scratch in PyTorch” [17]. In this
implementation, the images are resized to 227x227 pixels be-
fore they go through the convolutional neural network, which
is the main distinction from the standard VGG16 architecture.

After running 30 epochs, we reached an accuracy of 35%,
which took approximately 30 hours to run. Here, accuracy
is calculated with respect to the target model’s label, ie. we
achieved a 35% match to the target model’s decision boundary.
This version of the model is what we used to run our black box
attacks on as we had to proceed to the benchmarking phase.
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Fig. 23: Shows the success rate of our surrogate attack w.r.t.
its white-box counterparts

2) Results: From Fig. 23, we can see that the surrogate
attack performed rather poorly overall. Using FGSM the attack
consistently outperforms random perturbations but lies far
below the white box rates. With PGD, the surrogate model
performs worse, with the success rate leveling off at about
50% at higher epsilon values. The primary reason for this poor
performance is that our surrogate model never achieved high
accuracy in mimicking the target model’s decision boundary.
This meant that FGSM and PGD created perturbations using
a loss function (the surrogate’s) that was far from that of the
target model and hence would not be particularly effective.
However, it is clear that even with only a 35% accuracy from
the surrogate model, the surrogate attack outperforms random
noise in the lower epsilon range [1, 16].

3) Surrogate FGSM vs Surrogate PGD: The Surrogate
PGD attack did particularly poorly as PGD finds local minima
rather than relying on only the general shape of the loss
function. Since our surrogate did not match the target model
closely, the two loss functions likely shared few local minima
for PGD to exploit. This explains the leveling off of the
surrogate PGD curve as PGD gets stuck in the local minima of
the surrogate loss function which may not have counterparts
in the target loss function.

In contrast, the curve of the surrogate FGSM attack’s
success rate does not level off of this sort. At 35%, training
of the surrogate model did achieve a significant degree of
similarity between the two loss functions. This similarity,
though not apparent at the local minima level, is present and
exploitable on the larger-scale shape of the loss functions.
FGSM relies on the large-scale linearity of the loss functions
and this is likely the reason FGSM outperformed PGD with the
surrogate model. This is a reversal from PGD outperforming
FGSM in white box situations because PGD’s precise potency
is aimed, inefficiently, at the surrogate model instead of at the
target model.

IV. DISCUSSION

A. Save Perturbation to Image

When considering the practical application of adversarial
attacks on deployed models, the perturbations crafted by

different methods must be stored in image file formats, which
introduces several challenges that can potentially diminish
the effectiveness of the attacks. One notable factor is the
use of the JPEG compression format, which is known to
degrade image quality due to its lossy nature. Studies, such as
one conducted by Kurakin et al. in 2017, have demonstrated
that this compression can lead to a significant decrease in
the success rate of adversarial attacks post-conversion [18].
Furthermore, the process of converting perturbations from their
original float representations into standard RGB integer values
can also slightly impact the attack’s success rate, typically
around 1%. This loss, albeit relatively small, is non-negligible
when aiming for optimal attack performance.

Additionally, modifications to the preprocessing steps uti-
lized by the target model can influence the efficacy of the
attack. If a model employs different preprocessing methods,
such as resizing, cropping, or skewing, these transformations
can alter the effect of the adversarial perturbations, thereby
impacting the success rate of the attack. It is important to
note, however, that quantifying the exact impact of these
preprocessing changes on the success rate for each adversarial
method is beyond the scope of our current paper.

B. Perceivable Perturbations

Another evaluation that one might be concerned about in
real-world applications is how perceivable the perturbations
are. Depending on how the perturbations are generated for
each attack method, it leads to different visual effects. For
example, because FGSM universally applies a change of
fixed step size (ϵ) to each pixel, the visual effect of that
looks like having noise masking on the original image and
the perturbation becomes more and more visible as the ϵ-
value increases. On the other hand, since the PGD attacks
use ϵ-value as the range to search a local maximum, the
actual perturbation usually falls smaller than this ϵ-value
resulting in less visible perturbation given the same image
and the same ϵ-value in comparison to FGSM. Specifically,
the average perturbation value for PGD is 0.037 out of 255.
Additionally, LocSearchAdv uses perturbations that visually
resemble adding color blocks to the original image, which is
a different visual effect than applying a perturbation to each
pixel individually. This sort of perturbation can help determine
how to create adversarial examples in the real world on the
subject of these images, for example putting tape on a stop
sign to have it classified as a speed limit sign.

Given more time, we might be able to conduct a survey that
asks participants to rate how perceivable the perturbations are
on some sample images. However, depending on the context
of the viewer (e.g. taking a glance at a sign on the sidewalk
or admiring a painting in an art gallery), it is a subjective
measurement to assess if a kind of perturbation is perceivable
or not, and the visual differences between each image add on
more complexities to this measurement.
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C. Surrogate Limitations and Potential Improvements

Our surrogate model achieved a 35% accuracy on its train-
ing set, meaning that it only matched the decision boundary of
the target model to that degree. This could have been improved
in a few different ways.

1) With more time and computational resources, we could
have explored more potential classifier architectures, run
longer training cycles, and better optimized training
hyperparameters.

2) Our dataset of 85,000 images is a rather small one
for this sort of training, the VGG paper trained on 1.5
million images.

We also suspect that one of the major reasons for this
attack’s poor performance has to do with the architecture
of the target model, specifically the image size that it takes
in. MobileViT takes in images at 288x288 and crops into
the center 256x256 pixels. Our surrogate model rescaled
images to 227x227 and did no cropping. This smaller rescaling
introduces detail loss when downsizing images and blurring
to the perturbations when scaling back up for the attack on
the Target model. These two rescalings significantly impact
performance.

If there is a way to rescale images to the same size as the
target mode, we can avoid this rescaling problem. The method
we conceived of for determining the correct rescaling size is
this:

1) Take a small set of images for which the target model
has 100% accuracy.

2) Resize this dataset to a range of different sizes and
observe the change in target model accuracy on the
rescaled images.

Once the plateau is reached, a rescaled size where larger
rescalings yield no further accuracy improvement is found.
Hence, you can be sure that a surrogate model that uses
this rescaling factor will lose minimal data and perturbation
effectiveness due to rescaling.

Our implementation of this test yielded convincing results.
We did this with 1000 images which we rescaled from size
50x50 to 550x550. Results are visualized in the Fig. 24.

Fig 24 shows a plateau flattening around our correct rescal-
ing factor of 288 (for MobileViT). Due to differences in
scaling methods, this does not plateau to 100% accuracy, but
it distinctly shows how rescaling the image will affect target
model accuracy. An attacker, equipped with these results,
should choose a surrogate model architecture that utilizes an
image size between 285 and 320.

Another branch to explore is the small peak near size 288.
Across our small set of experiments, we found there to be a
small range around the correct rescaling size in which accuracy
had a greater variance. We have not yet proven a correlation
here, nor do we have a hypothesis to explain this behavior.
However, further experimentation might prove that this is a
more accurate and efficient means of identifying the correct
rescaling size.

Fig. 24: Accuracy (%: percentage of images where the
predicted label is equivalent to true label) in relation to the

image size)

If we had more time, another possible implementation
would be to do multi-scale training. For multi-scale training,
each training image would be randomly resized in a size range
between the smallest and largest possible rescaled size of
the images, which is set by the developers. This allows for
the model to recognize images regardless of scale, without
lowering accuracy [16].

Though the VGG16’s architecture depth makes it ideal for
larger datasets, our current training set may not be big enough.
To increase the number of training images, we can do a
process similar to that mentioned in “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” where they
randomly horizontally flipped images and did random RGB
shifts. This way we can double the size of our training image
set. Sourcing images from other sources for the training dataset
is also possible but would impact the distribution of the dataset
so these would have to be selected such that this distribution
is conserved.

D. Surrogate Potential

These results do not fairly represent the upper bound of
the performance a surrogate attack can achieve. This poor
performance can be attributed to the number of problems with
our initial approach (as mentioned above). A better-designed
surrogate model, built with more time, more computational
resources, and the knowledge we have now gathered has the
potential for much higher success rates.

A better performing surrogate model could be an effective
alternative to query-based methods such as LocSearchAdv
as it produces more subtle perturbations but the preparation
required in designing and training the surrogate model may
make this method too time and resource intensive to be viable
if this is not a priority.

E. Defense Strategies

Thus far in this paper, we have examined different Adversar-
ial Attacks and their performance. Successful implementation
of these attacks can have significant consequences, thus it is
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important to investigate defense strategies. Our research of
defense against adversarial attacks can be broadly split into
two categories: adversarial training and modifications to the
target neural networks.

Adversarial training is a defense strategy that can be em-
ployed against attacks. When an image classifier fails, it is
because it does not know how to identify the image. In the case
of adversarial attacks, the model has never seen the perturbed
images that “confuse” it such that it does not know what
to do. One solution to this as described by Zhao, Alwidian,
and Mahmoud in their paper Adversarial Training Methods
for Deep Learning: A Systematic Review is training models
on adversarial examples [19]. They argue that Adversarial
training is one of the most promising approaches to combating
attacks. This is done through training the model to generalize
adversarial examples as well as clean images. It is an iterative
process, where an adversarial example is created, run through
the model, and then the model retrains and updates.

Adding elements of randomness to the neural network is
another way to reduce the effectiveness of Adversarial Attacks
and change the neural network. By adding some randomness
into the neural network, adversarial attacks have a harder time
learning the specific model patterns to exploit. Randomization
layers are one of these strategies. The first randomization layer
is the resizing layer. It takes the original image with dimension
W ×H × 3 and rescales it to size W ′ ×H ′ × 3. We want our
|W − W ′| and |H − H ′| to be within a small range so that
the performance on clean images does not decrease too much
[20]. According to research by Cihang Xie, Zhishuai Zhang,
and Alan L. Yuille, the ideal range for images of input size
299 × 299 × 3 is within the range of [299, 331]. The second
randomization layer uses random padding. This means that the
resized images get (within a random range) a number of 0’s
on each side. If we imagine our image size with padding to
be W ′′ ×H ′′ × 3 and we pad with w 0’s on the left and right
and h pixels above and below the image we have (W ′′−W −
+1)×(H ′′−H ′+1) different possible padding configurations.
This defends against iterative-based adversarial attacks like
LocSearchAdv.

Fig. 25: “The pipeline of our randomization-based defense
mechanism” (Xie. et al 2018)

Another way to defend against attacks while using random-
ness is through stochastic activation pruning (SAP) [21]. The

way this defense system works is that in the forward pass of
a model’s prediction, we stochastically prune a random subset
of activation in each layer. We preferentially retain activations
with larger magnitudes which means we are pruning the
activations with smaller magnitudes. The remaining activations
are then scaled up to normalize the range of the next layer. One
reason that SAP is a good defense is that it can be applied post-
hoc to pre-trained networks and does not require additional
fine-tuning.

The defense strategies we have discussed are by no means
exhaustive. They are a small sample of avenues of future ex-
ploration. Studying defense mechanisms is important because
it helps us understand the nuances of these attacks and how
different strategies work for different models. In this way, we
can minimize some of the impacts of successful adversarial
attacks in real-world situations.

F. Ethics

In addition to defense strategies, the ethical implications
of these attacks need to be acknowledged as the field of
adversarial machine learning expands. For instance, there is a
chance that models are involved in data that has unfair patterns.
For example, many facial recognition models are trained on
datasets that contain mostly white men, which means that the
model is biased against people who are not white men.

Adversarial ML researchers always assume that they are
trying to make models more robust through their research
and that all attacks come from ill-intentioned researchers.
However, there may be cases in which the attack is attempted
for good [22].

This also brings into question “Is there a way to do ethical
adversarial attacks?”. Adversarial attacks are usually done by
attackers with the wrong intention. However, this poses the
question of when the attackers have a good intention, are
they allowed to attack the ML system however they want?
The instance can be defined as an Ethical Adversarial Attack
(EAA). For instance, are cybersecurity experts allowed to
attack malicious systems to maintain security and privacy?
Yet, this also brings in the bigger question of what is allowed
in the field of AI for crime, which starts at the foundation
question of what it means to have AI for good. Does only
the intention matter or does only the process or does both,
meaning are the people who are trying to do good (like the
cybersecurity experts) allowed to do something “bad” (such
as attacking models) in their process of doing good? It also
brings into question when an attack starts being considered as
security. And if an attack is considered security, how do we
efficiently monitor and control its usage [23]?

The diversity of the field reflects issues of the field. For
instance, the participants in a physical test must also be diverse
so that the participants pool is equivalent to the actual users
of the ML system. There needs to be an increase in the
number of participants who are people of color, different
sexuality, various jobs, and especially the intersection of
the identities. Diversity of the participant pool should also
include anthropometric features such as body shape, mobility
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and vision, and hearing abilities. By increasing diversity, the
testing environment has a greater number of perspectives. This
also calls for increased inclusivity within the field, where the
researchers are also diverse [24].

V. CONCLUSION

It is hard to definitively say that one of the adversarial
attacks we investigated outperforms all the others. Depending
on the amount of access one has to the system, one might
decide between a white box or a black box attack. Further-
more, the degree to which an image may be perturbed is
another factor of consideration when choosing an algorithm
for your specific needs. For example, LocSearchAdv does
not require a deep level of machine learning knowledge to
understand; however, it is quite computationally intensive
and has noticeable image perturbations. A surrogate attack is
comparatively less detectable to the human eye, but requires
intensive setup to reach useful levels of effectiveness. On
the white box side, PGD can generate extremely successful
adversarial examples with perturbations that are undetectable
to humans, but it is far slower than FGSM, which creates only
slightly less potent perturbations. Other considerations like the
desired misclassification rate or new classification class may
also factor into algorithm choice. There is no one-size-fits-all
choice in deciding on what attack method to use as an attacker
or defend against as a model developer, but it is clear a broad
understanding of these different attacks is a useful resource,
regardless of which side of this fight we are on.

REFERENCES

[1] “Artificial intelligence: Adversarial machine learning — nccoe. (n.
d. -a),” https://www.nccoe.nist.gov/ai/adversarial-machine-learning, ac-
cessed: 2024-03-06.

[2] R. R. Wiyatno, A. Xu, O. Dia, and A. de Berker, “Adversarial examples
in modern machine learning: A review,” 2019.

[3] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
2018.

[4] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” 2017.

[5] S. Kaviani, K. J. Han, and I. Sohn, “Adversarial attacks and defenses
on ai in medical imaging informatics: A survey,” Expert Systems
with Applications, vol. 198, p. 116815, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095741742200272X

[6] B. Yang, Z. Jin, Y. Cheng, X. Ji, and W. Xu,
“Adversarial robustness analysis of lidar-included mod-
els in autonomous driving,” High-Confidence Computing,
vol. 4, no. 1, p. 100203, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667295224000060

[7] B. Biggio and F. Roli, “Wild patterns: Ten years after
the rise of adversarial machine learning,” Pattern Recognition,
vol. 84, p. 317–331, Dec. 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.patcog.2018.07.023

[8] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, ser. AISec ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
43–58. [Online]. Available: https://doi.org/10.1145/2046684.2046692

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[10] N. Narodytska and S. P. Kasiviswanathan, “Simple black-box adversarial
perturbations for deep networks,” 2016.

[11] N. A. Lord, R. Mueller, and L. Bertinetto, “Attacking deep networks
with surrogate-based adversarial black-box methods is easy,” 2022.

[12] “Imagenet. (n.d.).” https://image-net.org/challenges/LSVRC/2013/index,
accessed: 2024-03-12.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021.

[14] S. Mehta and M. Rastegari, “Mobilevit: Light-weight, general-purpose,
and mobile-friendly vision transformer,” 2022.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[17] “Writing vgg from scratch in pytorch. (2022, june 2). paperspace blog.”
https://blog.paperspace.com/vgg-from-scratch-pytorch/, accessed: 2024-
03-11.

[18] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2017.

[19] W. Zhao, S. Alwidian, and Q. H. Mahmoud, “Adversarial training
methods for deep learning: A systematic review,” Algorithms,
vol. 15, no. 8, 2022. [Online]. Available: https://www.mdpi.com/1999-
4893/15/8/283

[20] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” 2018.

[21] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar, “Stochastic activation pruning for
robust adversarial defense,” 2018.

[22] K. Albert, M. Delano, B. Kulynych, and R. S. S. Kumar, “Adversarial
for good? how the adversarial ml community’s values impede socially
beneficial uses of attacks,” 2021.
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